
Ray Path Categorization

DIEGO NEHAB MARCELO GATTASS

TeCGraf: Grupo de Tecnologia em Computação Gráfica, PUC-Rio,
R. Marquês de S. Vicente 225, Gávea, Rio de Janeiro, 22453-900, RJ, Brasil

{diego,gattass}@tecgraf.puc-rio.br

Abstract. Edge detection and image segmentation algorithms usually operate on an image to extract geometrical
information based on pixel colors. For ray-traced images, the presence of geometrical information on the scene
from which the image was rendered allows for a completely different approach. We present an algorithm that
divides rays into equivalence classes, or categories. The category information is generated during the rendering
process and used to determine edges in the resulting image. Detected edges can later be used to help determine
areas subject to aliasing. Little effort is needed to implement the described algorithms over an existing ray-tracer.
Furthermore, the extra computational and memory requirements are modest.

1 Introduction

Segmentation algorithms are used to generate a set of re-
gions representing parts or objects in an image. Edge detec-
tion algorithms try to determine the pixels that fall on the
boundaries between two regions. Segmentation and edge
detection are usually essential preliminary steps in a vast
number of image processing applications, such as pattern-
recognition and scene-analysis.

Most edge detection algorithms apply some kind of
local derivative operator over pixel intensities. Image seg-
mentation methods usually threshold pixel intensities to di-
vide them into similar groups. These tasks are difficult be-
cause the only information available for a given image is a
matrix of pixels colors. Several approaches to solve both
problems are discussed by Gonzalez [9].

A ray-tracer scene consists of the geometrical descrip-
tion of a set of objects. Object properties such as shape,
material, texture, and position relative to some reference
frame are given in this description. Finally, a camera facing
the scene is defined, and the image as seen by this camera
is generated [8].

Traditionally, rendering is done by the casting of one
ray into the scene for each pixel of the image. Each ray
starts on the camera and passes through its associated pixel
on the camera’s projection plane. The color of a pixel is de-
termined by the path the ray follows as it intersects objects
in the scene, recursively spawning reflection and refraction
rays [15, 8].

In order to segment or detect edges in ray-traced im-
ages, we can use the geometrical information given by the
scene description. In Section 2 we present four variations
of a method that uses this information. Section 3 introduces
the edge detection algorithm based on ray path categoriza-
tion. As an application, in Section 4 we apply the idea in
adaptive antialiasing of ray-traced images. Section 6 dis-
cusses further applications for ray path categorization.

2 Ray categories

A ray-tracer uses an illumination equation to combine scene
information and determine the color of a pixel. Consider a
modified version of the illumination equation presented by
Whitted [15]:

I = Oe + OaSa

+
∑

i

[OdLdi
(N̂ · L̂i) + OsLsi

(N̂ · Ĥi)
n]

+ ksIr + ktIt (1)

In this equation, the original material constants seman-
tics have been changed to those present in the OpenGL
model [16]. There, Oe, Oa, Od and Os represent the ob-
ject’s emitting, ambient, diffuse and specular colors respec-
tively evaluated at the intersection. The summation is taken
over every light source in the scene that is visible from the
intersection point. Ldi

and Lsi
are the diffuse and specular

colors of each light source. Ir is the color of the reflected
ray and It is the color of the refracted ray, both being cal-
culated by the recursive spawning of child rays.

By examining Equation 1, we see that the path fol-
lowed by a ray can be described by the objects the ray hits,
by the light sources that are visible at the intersection points
and by the recursively generated reflection and refraction
rays. Some examples of different ray paths are shown for
the pixels a, b, and c of Figure 1.

We look for a way to partition these different paths
into different equivalence classes. To avoid confusion with
the concept introduced by Arvo [1], who classifies rays to
reduce the number of intersection calculations, we will use
the term category to refer to each equivalence class. The
division of pixels into groups that have the same category
is an image segmentation problem.

a b c

B

L

A

Figure 1: Paths followed by three adjacent rays a, b, and c,
up to recursion depth 2 of their paths. Ray a hits sphere A
where it reflects and refracts. Ray b also hits sphere A,
but the angle does not permit refraction at that point. Its
reflection, though, hits sphere B. Finally, ray c does not hit
any object in the scene.

2.1 Describing paths

The ray associated to each pixel defines a tree while inter-
secting objects and spawning reflection and refraction child
rays in the scene. Tree nodes represent intersections with
objects. Left and right branches represent refraction and
reflection child rays respectively. Figure 2 shows some ex-
amples of such trees. We say that two rays have the same
category if the trees induced by them are equal.

A
a

A,L

A,L

A,L
b

B,L

c

Figure 2: The trees induced by the rays a, b, and c of
Figure 1. Each node is labelled by the id of the object hit
and by the ids of the light sources that were visible at the
intersection.

We assume that objects and each light sources in the
scene have unique identification symbols, henceforth called
object ids, or ids for short, just like the labels given for the
spheres and the light source in Figure 1. Usually, all ids will
be numbers, but the only requirement is that they be unique
and that we can compare them for equality.

With this information available during the rendering
process, there are several ways to generate a description of
the trees seen in Figure 2. We propose and analyze four
different approaches: the string method, the primes product
method, the Gödel method and the binary heap method.

2.1.1 String method

The first idea that comes to mind is to concatenate all sym-
bols in the tree, in depth-first search order, creating a string
of ids. The implementation is simple because this is the
natural order the intersections are found during the recur-
sive ray-tracing process. The method would yield strings
ALALA, BLAL, and λ (the empty string) for rays a, b, and c
of Figure 2, respectively.

Since the recursion depth for a regular scene is usu-
ally small, tree sizes remain treatable. Nevertheless, we
would gain in performance by working with more concise
descriptions of trees: hash values would compare faster and
take less storage space. The primes product and and Gödel
methods follow this idea.

2.1.2 Primes product

Suppose the ids in Figure 1 are replaced by different num-
bers: say A is 2, L is 3, and B is 4. One could describe the
trees in Figure 2 by multiplying all the ids in each tree. This
would give values 2·3·2·3·2 = 72 for tree a; 4·3·2·3 = 72
for tree b; and 1 for tree c (1 being defined as the value for
the empty tree).

The results are not satisfactory because the categories
for trees a and b collided even though the trees are differ-
ent. The problem is that the numbers chosen for spheres A
and B were not coprime: in fact, A · A = B . The Fun-
damental Theorem of Arithmetic [2] states that every inte-
ger has a unique prime factorization. Therefore, we can
solve this problem by restricting ids to the set of prime
numbers. We will not run out of prime numbers because,
by the Prime Number Theorem [2], there are more than
200,000,000 prime numbers less than 232. The primes can
be precomputed or generated incrementally while the scene
is being loaded by the ray-tracer. Generating primes by the
Eratosthenes Sieve [2] should be fast enough for any ray-
tracer application.

The new values for trees a and b, considering A = 2,
B = 3, and L = 5 are 200 and 150, respectively. Since
there will be usually one or more light sources visible from
most object-ray intersections, light sources should have the
lowest ids to avoid overflow problems.

Although the results obtained with the prime number
method are quite satisfactory, it is easy to construct a scene
for which the method will fail. Consider, for example, Fig-
ure 3. Since the product operation is commutative, different
strings may map to the same number. That is, the primes
product map from strings to natural numbers is not one-to-
oner. Indeed, for the example in Figure 8, rendered as a
512 × 512 image, the primes product method fails for 26
pixels due to improper collisions between categories while
detecting edges by the method explained in Section 3.

a b

A B

Figure 3: The two adjacent pixels a and b have string cat-
egories of BA and AB respectively, but the primes product
categories are the same. The classification fails for this
case.

2.1.3 Gödel numbering

A subtle change in representation leads to a new method
that succeeds for Figure 3. Assume object ids are sequen-
tial natural numbers. A device called Gödel numbering [12]
establishes a one-to-one relation between strings and natu-
ral numbers. Gödel used this mapping to prove his Incom-
pleteness Theorem.

Let a1a2a3 . . . an be the string of integer ids that we
want to convert to a single number. The corresponding
Gödel number is pa1

1
· pa2

2
· pa3

3
· · · pan

n
, where pi is the

ith prime number. It is easy to see, again by the Funda-
mental Theorem of Arithmetic, that the mapping is indeed
a bijection between the set of integer strings and the set of
natural numbers. For the example of Figure 3, tree a would
map to 2B

· 3A, whereas tree b would be represented as
2A

· 3B .
Although Gödel numbering succeeds on the 13 pixels

for which primes product fails in Figure 8, it has a serious
limitation: Gödel numbers tend to grow much faster than
primes products. Consider a scene in which a ray spawns a
full tree up to depth 4. The corresponding string would have
more than 16 nodes if there are any visible light sources.
If we take the first 16 prime numbers and multiply them
together, the result is 32589158477190044730, which is a
65-bit integer. If we raise the prime numbers to their appro-
priate powers—the object ids—the result can easily over-
flow a 80-bit double precision floating-point number.

Just as an example, consider Figure 2. Recall that the
computed primes product numbers were 200 and 150 for
trees a and b, respectively. If we take A = 1, B = 2, and
L = 3, the corresponding Gödel numbers are 2 · 33

· 5 · 73
·

11 = 1018710 and 22
· 33

· 5 · 73 = 185220, respectively.

2.1.4 Binary heap

For scenes with no refraction, both the string and Gödel
methods define one-to-one mappings from ray paths to cat-
egories. Unfortunately, when refraction is present, these

methods can fail. Since not all nodes are present on the tree,
a depth-first listing of the nodes is not enough to uniquely
determine a tree. Again, improper collisions between cat-
egories of different trees can happen. This fact is better
illustrated by the example in Figure 4.

C
a

BL

A

C
b

BL

A

Figure 4: Trees a and b are different, but have the same
depth-first order listing, ABLC, of their nodes.

We can solve this problem by assigning a unique num-
ber to each node position in a tree and storing this number,
along with the collision information, in the string. To do so,
we imagine that the tree is a complete binary tree and num-
ber the nodes with their binary heap ordering [4]. Figure 5
explains this idea.

1C

a

2BL

4A 5

3

6 7

1C

b

2

4 5

3BL

6 7A

Figure 5: With the numbering of the node positions, trees
a and b receive strings 4A2BL1C and 7A3BL1C, respec-
tively. The new coding is a perfect hash.

Although the method is general as stated, we could
save some memory coding each node as a 32-bit integer if
we impose some restrictions. Usually, a ray-tracer will not
go deeper than eight recursion levels so that the node num-
ber can be stored in 8 bits. Following the OpenGL illumi-
nation model, we can limit the maximum number of light
sources to eight, so that we can also pack all light source
visibility information into 8 bits. This leaves a 16-bit word
to identify the object intersected, leading to a maximum of
65536 different objects in the scene. The new coding takes
no more memory than the unrestricted version of the string
method.

2.2 Method comparison

The primes product method is the simplest but is also the
least precise. The results are very good for simple scenes.
For complex scenes, however, the method can fail unpre-

dictably. Nevertheless, the simplicity of its implementation
and the reduced performance overhead may justify its use.

The Gödel numbering method is more of academic in-
terest than of practical use. Even though for scenes with
few objects the method can achieve the same results as the
string method, categories are likely to overflow any ma-
chine size number for scenes with many objects. Any ad-
vantages over the primes product method will be lost due
to overflow problems. The method is also somewhat harder
to implement than the primes product, because child ray
categories can not be directly merged (i.e. multiplied) to
generate the parent’s ray category.

For scenes not involving refraction, the string method
can be used safely. In fact, for those scenes, all nodes in
the recursion tree have degree one. Therefore, a depth-
first order listing of the tree nodes is perfect at describing
ray paths. For some scenes involving refraction, the string
method can fail for a few points. It is hard to design a scene
specifically to force the method to fail. To detect failures,
the scene of Figure 9 was rendered from several different
viewing angles and then compared with the results obtained
by the binary heap method. For some of the viewing angles,
failures were spotted.

Table 1 shows that, besides being the only method to
obtain correct results for all scenes, the performance of the
binary heap method compares favorably with that of the
other methods. Binary heap can be easily implemented as
a variation of the string method, where the node number is
added to the string whenever an intersection is detected. In
the worst case, string lengths will only double. The num-
bering of the nodes can be generated and made available
on-the-fly as an extra argument to the recursive ray casting
function. For these reasons, the binary heap method should
be preferred whenever precise results are required.

Method Pixels selected Rendering time (s)
Figure 9 8 9 8

No categories 0 0 46.3 9.0
Primes 43280 23630 48.2 9.3
Gödel 43330 23656 97.5 48.7

Strings 43330 23656 50.6 11.4
Heap 43340 23656 51.7 11.9

Table 1: Comparison of the categorization methods. Time
results for the Gödel method are for an unoptimized im-
plementation over a modified version of the string method.
Hence the bad performance.

3 Detecting edges

Ray path categories can be used to detect edges in a ray-
traced image. Our edge detection algorithm uses some of
the ideas that Whitted [15] developed for his adaptive an-
tialiasing approach. We consider a pixel as representing

the ray cast through its lower left corner. To determine the
pixels that spawn edges, each pixel is compared against its
three 4-neighbors (a, b, c for pixel p in Figure 6(a)). If
any differences are detected, the pixel is selected as an edge
pixel. If further precision is required, each pixel can be
broken into four subpixels and the comparison process can
continue recursively at subpixel level. Using this idea, the
colored pixels shown in Figure 6(b) are exactly those over
the borders of the object.

cp

ba

(a) (b)

Figure 6: (a) Edges are detected when a pixel’s category
is different from that of one of its neighbors. (b) Pixels
selected as edges for a simple scene.

By choosing the information that gets registered in a
category and the recursion depth up to which this informa-
tion is registered, it is possible to choose the level of detail
of the edge detection algorithm. Figure 7 shows a simple
scene for which edge detection has been performed in sev-
eral levels of detail.

(a) (b) (c)

(d) (e) (f)

Figure 7: Different levels of detail for edge detection.
(a) Original; (b) Depth 1; (c) Depth 2; (d) Depth 4; (e)
Depth 6 with light visibility; (f) Segmented at depth 6 with
light visibility.

Figure 8: A highly reflective scene. Chosen edges have
been enhanced over the rendered image

Edges have been marked over two test scenes. The
binary heap method was used to generate category infor-
mation for both images. Figure 8 shows a scene where
highly reflective objects are present. The algorithm detects
all edges within reflections and shadows. Figure 9 shows
the results of the algorithm on a scene where a transparent
sphere is present. The algorithm reveals structures created
by the refraction and internal reflection inside the sphere.

3.1 Composite objects

Composite objects are objects containing more than one
primitive surface. Polyhedra, cones, and cylinders are ex-
amples of composite objects. Constructive Solid Geometry
(CSG) objects are composite objects defined by set opera-
tions over other objects.

Consider an intersection with a cube. If there is no
distinction between cube faces, all that gets registered in a
category is the cube’s id and all methods will fail to detect
edges between cube faces.

If, on the other hand, the ids reported at intersections
are those of the primitive objects containing the surfaces
hit, the methods presented here work for composite objects.
Figure 10 shows the results obtained while detecting edges
for the basic CSG operations.

4 Application to antialiasing

Aliasing arises because ray-tracing is a sampling process.
The sampled image can only represent information up to a
bounded frequency. Higher frequencies present in the scene

Figure 9: Refraction example. Chosen edges have been
painted black over the rendered image

Figure 10: The set operations of union, intersection and
subtraction over primitive objects sphere and box. De-
tected edges have been painted black over the rendered
image.

appear falsely as low frequencies when regular sampling is
used, creating annoying jagged edges and Moiré patterns.

The simplest way to improve image quality is to over-
sample the image. Figure 11 shows the result of the tech-
nique for a simple scene. Oversampling the whole scene is
too expensive, so that several alternatives have been stud-
ied to generate high-quality images at low average sampling

(a) (b)

Figure 11: (a) A simple sphere, rendered at a low sam-
pling rate. The circle shows a better approximation for the
object’s borders. (b) A 16 × 16 uniformly supersampled
version of the same scene.

rates.
For some classes of models, prefiltering [5] can en-

sure that high frequencies in the scene do not exceed half
the sampling rate, thus eliminating aliasing. It is not, how-
ever, a viable option for general scenes. Stochastic sam-
pling methods [3, 7, 11] use nonuniform sampling to con-
vert aliasing patterns into less perceptible noise patterns.
Adaptive sampling methods [15] improve image quality by
oversampling close to edges in the image. Some hybrid
algorithms that use both adaptive and stochastic sampling
attain even better results [14].

Adaptive algorithms are likely to differ in the way they
detect edges. Most of them base this decision on a heuristic
measure of color variation on a pixel neighborhood. In-
stead, we can expect that high frequencies in the scene will
lead to different categories between adjacent pixels in the
image. That is, we can choose to oversample only the pix-
els found to lie over detected edges.

4.1 Scalability

One of the advantages of using edge detection for antialias-
ing is that the larger the image dimensions, the better the
algorithm performs, proportionally. This happens because,
for a scene rendered as a n × n image, the number of pix-
els on the edges of objects and shadows is O(n). Thus, the
percentage of pixels that will be chosen for oversampling
is O(n

n2) = O(1

n
). The graph in Figure 12 shows the ratio

between the number of pixels selected and the total number
of pixels for the scene in Figure 9 as a function of the image
resolution.

4.2 Textures

Our implementation of the methods presented here do not
detect aliasing caused exclusively by texture sampling, since
they consider objects as being uniform. Fortunately, it is
easy to detect and mark trees containing intersections with
objects on which textures have been applied. For example,

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450 500

Figure 12: The hyperbolic decrease of the percentage of
pixels to be oversampled with the linear growth of the im-
age dimensions.

if we define as zero the ids of all texturized objects when
using the primes product method, the category of any tree
hitting one of those objects will be zero. While checking for
pixels to be oversampled, the renderer can check if its cat-
egory is zero and select it regardless of adjacent categories.
Gödel numbering can also be marked with the number zero.
String and binary heap methods can, for example, have cat-
egories marked with an invalid first element.

There are many algorithms that perform antialiasing
on texture-mapped pixels [10]. By detecting the pixels af-
fected by textures, we can later apply one of these methods
only where needed.

(a) (b) (c)

Figure 13: Antialiasing process. (a) Original image for
which category information is generated; (b) Pixels cho-
sen for antialiasing by the edge detection method; (c) Re-
sult of oversampling chosen pixels.

4.3 Examples

Figure 13 shows the steps of the antialiasing process. With
category information available during the rendering pro-
cess, pixels selected by the edge detection method are over-
sampled. Oversampling the edges is enough to improve im-
age quality. In fact, some of the edges detected by category
comparison do not correspond to discontinuities in the im-
age. For this reason, the method may oversample even more
pixels than needed for visual effects.

5 Implementation

The results presented so far have all been obtained with a
ray-tracer specially constructed for this article. The pro-
gram was designed to simplify all implementation aspects
of the different categorization algorithms. In order to as-
sess the amount of work involved in adapting an existing
ray-tracer to benefit from the methods described in this ar-
ticle, we chose to extend POV-Ray [13], a well-known free-
software ray-tracer.

POV-Ray implements two antialiasing methods. Both
methods are adaptive to some extent. The default method is
a simple threshold method, where a pixel is oversampled at
a fixed rate if its intensity is found to differ too much from
that of its neighbors. The second method is very similar to
that presented by Whitted [15].

With the addition of only 160 lines of code, within a
period of three days, we were able to modify POV-Ray to
perform edge detection and antialiasing by the primes prod-
uct algorithm. Primes product was chosen for its simplic-
ity, and was used instead of the comparison function used
by the simple threshold method to create a third antialiasing
method. A member of the POV Development Team would
certainly have saved the time we spent analyzing the source
code and thus finish the implementation much faster, given
the simplicity of the new algorithm.

Table 2 shows the average number of samples per pixel
obtained with POV-Ray and the different antialiasing meth-
ods. Although it is hard to define final image quality, Whit-
ted’s method produced considerably superior results, in part
due to higher sampling rates. Primes product and the simple
threshold methods produced similar results regarding qual-
ity, although simple threshold generated less samples per
pixel.

Method 160 × 120 320 × 240 640 × 480

Thresholding 2.10 1.56 1.29
Whitted 3.33 2.15 1.52
Primes 2.27 1.75 1.52

Table 2: Average number of samples per pixel for differ-
ent antialiasing methods. Uniform supersampling on ev-
ery pixel would generate 4 samples per pixel.

Even though the new method oversamples more pixels

Figure 14: Edge detection by the primes product algo-
rithm running on a POV-Ray sample image due to Tru-
man Brown. Chosen edges have been enhanced over the
rendered image.

to obtain results similar to that of existing methods, it is still
much better than uniform supersampling. The next section
discusses further applications for edge detection based on
ray path categorization.

6 Further applications

Edge detection can be used to generate line-arts of ray-
traced scenes. Starting with a blank image, we paint the
selected pixels black. The result is a sketch of the rendered
image, with no shading information. Examples are seen in
Figure 15.

Line-art scenes have more than aesthetic value. They
give some insight into the behavior of the ray-tracing al-
gorithm. Figuring out the meaning of the edges, one can
learn about the paths the rays belonging to each category
followed during the rendering process. Alternatively, gen-
erating a sequence of images like that of Figure 7 can reveal
what information is gained by the increase of the maximum
tree depth. Observing a set of images like Figure 15, one
can better understand the internal reflection and refraction
in transparent objects.

7 Conclusions

Although the application to antialiasing did not improve
over existing methods, the proposed algorithms for edge
detection generate interesting results, as shown by the line-
art images. We believe that other uses may be found for
these results in the near future, perhaps in areas not directly
related to computer graphics that use ray-tracing, such as
telecommunications or seismic waves analysis.

Future works in the area include the development of
other forms of visualization for the category information

Figure 15: Line-arts of Figure 9 for several depths of re-
cursion.

and the investigation of further applications for the ray path
categorization algorithms.

8 Acknowledgements

We would like to thank Vinicius da Silva Almendra, who is
coauthor of the first program implementing the ideas pre-
sented here. Many thanks to Luiz Henrique de Figueiredo,
Antonio Scuri, Alexandre Sieira Vilar, and Ana Elisa Schmidt
for the help fine tuning the text. Finally, we would like
to thank the SIBGRAPI reviewers, who presented several
new ideas for improvements and for the continuation of
this work. This work has been developed in TeCGraf/PUC-
Rio, and was partially funded by CNPq. TeCGraf is mainly
funded by PETROBRAS.

References

[1] J. Arvo and D. Kirk. Fast ray tracing by ray classi-
fication. In Computer Graphics, Annual Conference
Proceedings, pages 55–64. ACM SIGGRAPH, 1987.

[2] Lindsay N. Childs. A Concrete Introduction to Higher
Algebra. Springer, 1995.

[3] Robert L. Cook. Stochastic sampling on computer
graphics. ACM Transactions on Graphics, 5(1):51–
72, January 1986.

[4] Thomas H. Cormen, Charles E. Leiserson, and
Ronald L. Rivest. Introduction to Algorithms. Mc-
Graw Hill Book Co., 1989.

[5] F. C. Crow. The aliasing problem in computer-
generated shaded images. Communications of the
ACM, 20(11), November 1977.

[6] F. C. Crow. A comparison of antialiasing techniques.
IEEE Computer Graphics and Applications, 1(1):40–
48, January 1981.

[7] Mark A. Z. Dippé. Antialiasing through stochastic
sampling. In Computer Graphics, Annual Conference
Proceedings, pages 69–78. ACM SIGGRAPH, July
1985.

[8] Andrew S. Glassner. An Introduction to Ray Tracing.
Academic Press, 1989.

[9] Rafael C. Gonzalez and Richard E. Woods. Digital
Image Processing. Addison-Wesley Publishing Co.,
1992.

[10] Homan Igehy. Tracing ray differentials. In Computer
Graphics, Annual Conference Proceedings, pages
179–186. ACM SIGGRAPH, August 1999.

[11] Don P. Mitchell. Generating antialiased images at low
sampling densities. In Computer Graphics, Annual
Conference Proceedings, pages 65–72. ACM SIG-
GRAPH, 1987.

[12] R. J. Nelson. Introduction to Automata. John Wiley
& Sons, Inc., 1968.

[13] Persistence of Vision Development Team. POV-Ray.
http://www.povray.org.

[14] James Painter and Kenneth Sloan. Antialiased ray
tracing by adaptive progressive refinement. In Com-
puter Graphics, Annual Conference Proceedings,
pages 281–288. ACM SIGGRAPH, 1989.

[15] T. Whitted. An improved illumination model for
shaded displays. Communications of the ACM,
23(6):343–349, June 1980.

[16] Mason Woo, Jackie Neider, Tom Davis, and Dave
Shreiner. OpenGL Programming Guide. Addison
Wesley, 1999.

